27.01.2026 00:34 1/7 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

zurlick

Docker - Grundlagen (Images, Container,
Volumes, Networks, Compose)

Docker ist eine Container-Technologie, die Anwendungen leichtgewichtig, portabel und isoliert
betreibt, ohne komplette virtuelle Maschinen zu benétigen.

Container teilen sich den Host-Kernel, bendtigen aber keine eigenen Betriebssysteme — dadurch
starten sie extrem schnell und verbrauchen wenig Ressourcen.

1. Warum Docker?

Docker l6st typische IT-Probleme:

~Lauft auf meinem Rechner, aber nicht bei dir”
unterschiedliche Abhangigkeiten / Bibliotheken
komplizierte Installationen

Versionskonflikte

Mit Docker bekommst du:

¢ jsolierte Umgebung
reproduzierbare Builds
portierbare Anwendungen
schnelle Deployments
perfekt fir Microservices

2. Container vs virtuelle Maschinen

Container

teilen sich den Kernel

starten in Sekunden

sehr leichtgewichtig

ideal fur Webapps, DBs, Dienste

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/


http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:start

Last

update: it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker

23.12.2025
13:06

Virtuelle Maschinen

e vollstandiges OS
* hohe Isolation
e grolRere Ressourcenlast

Vergleich:

Container:
Host - Kernel - Container - App

VM:
Host - Hypervisor - volles 0S - App

3. Docker-Image

Ein Image ist eine Vorlage, aus der Container gestartet werden.

Besteht aus Schichten (Layers):

¢ Basis-Image (z. B. Debian, Alpine)
e App-Dateien

e Konfiguration

e Bibliotheken

Images sind:

e unveranderlich
e versionierbar
¢ portabel

Beispiele:

nginx:latest
mariadb:11
ubuntu:22.04

http://wiki.nctl.de/dokuwiki/

Printed on 27.01.2026 00:34



27.01.2026 00:34 3/7 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

4. Container

Ein Container ist eine laufende Instanz eines Images.
Merkmale:

e isoliert vom Rest des Systems

¢ hat eigene Prozess-ID, eigenes Netzwerk

¢ nutzt das Image als Grundlage

e nicht persistent (ohne Volume gehen Daten verloren)

Befehle:

docker run
docker ps
docker stop
docker logs

5. Volumes - Persistente Daten

Container-Daten sind fluchtig.
FUr dauerhafte Speicherung nutzt man Volumes.

Beispiele:

Datenbanken
Konfigurationen
Zertifikate

Uploads (z. B. Nextcloud)

Volume-Typen:

¢ named volumes (,,docker-volume*)
e bind mounts (z. B. /opt/stacks/app/data)

Container - /data o /opt/stacks/app/data

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/



Last
update:
23.12.2025
13:06

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker

6. Docker Networks

Container kommunizieren tUber Netzwerke.

Arten:
bridge
Standard-Netzwerk, Container -» Container.

host

Container nutzt Host-Netzwerk direkt.

macvlan

Container bekommt eigene MAC-Adresse im LAN.

overlay

Fir Swarm/Kubernetes-Cluster.

Beispiel:

docker network create mynet

7. Docker Compose

Docker Compose definiert komplette Anwendungen als YAML-Datei.

http://wiki.nctl.de/dokuwiki/

Printed on 27.01.2026 00:34



27.01.2026 00:34 5/7 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

Einfaches Beispiel:

version: "3" # kann weggelassen werden da veraltet

services:
web:
image: nginx
ports:
"80:80"
volumes:
- ./html:/usr/share/nginx/html

Vorteile:

mehrere Container auf einmal starten

verstandliche Struktur

Netzwerke, Volumes, Umgebungsvariablen definierbar
ideal fur jede moderne Architektur

Starten:

docker compose up -d

8. Registries

Registries speichern Images.
Offentliche:

e Docker Hub
e GitHub Container Registry

Private:
e Harbor

e GitLab Registry
¢ selbst gehosteter Registry-Container

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/



Last
update:
23.12.2025
13:06

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker

9. Sicherheit in Docker

e Container nicht als root ausfiihren

eigene Netzwerke nutzen

Secrets sicher speichern (docker secrets)

nicht ,latest” verwenden

Images regelmaRig aktualisieren

wenig privilegierte Container starten (-cap-drop)
Traefik/Nginx vor Webservices setzen

10. Realwelt-Beispiele (praktisch & TG-

tauglich)

Webserver + Datenbank

web (nginx)
db (mariadb)

Mein Home-Lab

¢ Traefik

Portainer

Vaultwarden

Nextcloud

Matrix

Mailserver

Monitoring (Grafana, Promtail, Loki)
CrowdSec

Unternehmensumgebung

e Microservices
¢ Load Balancer
e CI/CD Pipelines
¢ APl Gateways

http://wiki.nctl.de/dokuwiki/

Printed on 27.01.2026 00:34



27.01.2026 00:34 717 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

11. Best Practices

eindeutige Verzeichnisstruktur (/opt/stacks/)
alles in Docker Compose statt Einzellauf
Secrets in .env oder docker secrets
Healthchecks nutzen

Backups der Volumes nicht vergessen

Logs zentral erfassen (Loki, ELK)

Zusammenfassung

Docker nutzt Container statt VMs

Images als Vorlage = Container als laufende Instanz

Volumes speichern Daten permanent

Docker Networks verbinden Container

e Compose verwaltet komplette Anwendungen

e Container sind leicht, schnell und portabel

e Sicherheit ist wichtig (root vermeiden, Updates)

e Container sind Standard in DevOps & modernen IT-Umgebungen

From:
http://wiki.nctl.de/dokuwiki/ - [] Veni. Vidi. sudo rm -rf / vici.

Permanent link:
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker [;

Last update: 23.12.2025 13:06

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/


http://wiki.nctl.de/dokuwiki/
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker

	Docker – Grundlagen (Images, Container, Volumes, Networks, Compose)
	1. Warum Docker?
	2. Container vs virtuelle Maschinen
	Container
	Virtuelle Maschinen

	3. Docker-Image
	4. Container
	5. Volumes – Persistente Daten
	6. Docker Networks
	bridge
	host
	macvlan
	overlay

	7. Docker Compose
	8. Registries
	9. Sicherheit in Docker
	10. Realwelt-Beispiele (praktisch & TG-tauglich)
	Webserver + Datenbank
	Mein Home-Lab
	Unternehmensumgebung

	11. Best Practices
	Zusammenfassung

