
27.01.2026 05:42 1/7 Docker – Grundlagen (Images, Container, Volumes, Networks, Compose)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

zurück

Docker – Grundlagen (Images, Container,
Volumes, Networks, Compose)

Docker ist eine Container-Technologie, die Anwendungen leichtgewichtig, portabel und isoliert
betreibt, ohne komplette virtuelle Maschinen zu benötigen.

Container teilen sich den Host-Kernel, benötigen aber keine eigenen Betriebssysteme → dadurch
starten sie extrem schnell und verbrauchen wenig Ressourcen.

1. Warum Docker?

Docker löst typische IT-Probleme:

„Läuft auf meinem Rechner, aber nicht bei dir“
unterschiedliche Abhängigkeiten / Bibliotheken
komplizierte Installationen
Versionskonflikte

Mit Docker bekommst du:

isolierte Umgebung
reproduzierbare Builds
portierbare Anwendungen
schnelle Deployments
perfekt für Microservices

2. Container vs virtuelle Maschinen

Container

teilen sich den Kernel
starten in Sekunden
sehr leichtgewichtig
ideal für Webapps, DBs, Dienste

http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:start

Last
update:
04.12.2025
13:30

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851445

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 05:42

Virtuelle Maschinen

vollständiges OS
hohe Isolation
größere Ressourcenlast

Vergleich:

 Container:
 Host → Kernel → Container → App

 VM:
 Host → Hypervisor → volles OS → App

3. Docker-Image

Ein Image ist eine Vorlage, aus der Container gestartet werden.

Besteht aus Schichten (Layers):

Basis-Image (z. B. Debian, Alpine)
App-Dateien
Konfiguration
Bibliotheken

Images sind:

unveränderlich
versionierbar
portabel

Beispiele:

 nginx:latest
 mariadb:11
 ubuntu:22.04

27.01.2026 05:42 3/7 Docker – Grundlagen (Images, Container, Volumes, Networks, Compose)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

4. Container

Ein Container ist eine laufende Instanz eines Images.

Merkmale:

isoliert vom Rest des Systems
hat eigene Prozess-ID, eigenes Netzwerk
nutzt das Image als Grundlage
nicht persistent (ohne Volume gehen Daten verloren)

Befehle:

 docker run
 docker ps
 docker stop
 docker logs

5. Volumes – Persistente Daten

Container-Daten sind flüchtig.
Für dauerhafte Speicherung nutzt man Volumes.

Beispiele:

Datenbanken
Konfigurationen
Zertifikate
Uploads (z. B. Nextcloud)

Volume-Typen:

named volumes („docker-volume“)
bind mounts (z. B. /opt/stacks/app/data)

 Container → /data ↔ /opt/stacks/app/data

Last
update:
04.12.2025
13:30

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851445

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 05:42

6. Docker Networks

Container kommunizieren über Netzwerke.

Arten:

bridge

Standard-Netzwerk, Container → Container.

host

Container nutzt Host-Netzwerk direkt.

macvlan

Container bekommt eigene MAC-Adresse im LAN.

overlay

Für Swarm/Kubernetes-Cluster.

Beispiel:

 docker network create mynet

7. Docker Compose

Docker Compose definiert komplette Anwendungen als YAML-Datei.

27.01.2026 05:42 5/7 Docker – Grundlagen (Images, Container, Volumes, Networks, Compose)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

Einfaches Beispiel:

version: "3"

services:
 web:
 image: nginx
 ports:
 - "80:80"
 volumes:
 - ./html:/usr/share/nginx/html

Vorteile:

mehrere Container auf einmal starten
verständliche Struktur
Netzwerke, Volumes, Umgebungsvariablen definierbar
ideal für jede moderne Architektur

Starten:

docker compose up -d

8. Registries

Registries speichern Images.

Öffentliche:

Docker Hub
* GitHub Container Registry

Private:

Harbor
* GitLab Registry
* selbst gehosteter Registry-Container

—

9. Sicherheit in Docker

Container nicht als root ausführen
eigene Netzwerke nutzen

Last
update:
04.12.2025
13:30

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851445

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 05:42

* Secrets sicher speichern (docker secrets)
* nicht „latest“ verwenden
* Images regelmäßig aktualisieren
* wenig privilegierte Container starten (–cap-drop)
* Traefik/Nginx vor Webservices setzen

—

10. Realwelt-Beispiele (praktisch & TG-
tauglich)

Webserver + Datenbank

web (nginx)
db (mariadb)

Dein Home-Lab

Traefik
Portainer
* Vaultwarden
* Nextcloud
* Matrix
* Mailserver
* Monitoring (Grafana, Promtail, Loki)
* CrowdSec
* LDAP + Samba etc.

Unternehmensumgebung
Microservices

Load Balancer
* CI/CD Pipelines
* API Gateways

—

27.01.2026 05:42 7/7 Docker – Grundlagen (Images, Container, Volumes, Networks, Compose)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

11. Best Practices

eindeutige Verzeichnisstruktur (/opt/stacks/)
alles in Docker Compose statt Einzellauf
* Secrets in .env oder docker secrets
* Healthchecks nutzen
* Backups der Volumes nicht vergessen
* Logs zentral erfassen (Loki, ELK)

—

Zusammenfassung

Docker nutzt Container statt VMs
Images als Vorlage → Container als laufende Instanz
* Volumes speichern Daten permanent
* Docker Networks verbinden Container
* Compose verwaltet komplette Anwendungen
* Container sind leicht, schnell und portabel
* Sicherheit ist wichtig (root vermeiden, Updates)
* Container sind Standard in DevOps & modernen IT-Umgebungen

From:
http://wiki.nctl.de/dokuwiki/ - �️ Veni. Vidi. sudo rm -rf / vici.

Permanent link:
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851445

Last update: 04.12.2025 13:30

http://wiki.nctl.de/dokuwiki/
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851445

	Docker – Grundlagen (Images, Container, Volumes, Networks, Compose)
	1. Warum Docker?
	2. Container vs virtuelle Maschinen
	Container
	Virtuelle Maschinen

	3. Docker-Image
	4. Container
	5. Volumes – Persistente Daten
	6. Docker Networks
	bridge
	host
	macvlan
	overlay

	7. Docker Compose
	8. Registries
	9. Sicherheit in Docker
	10. Realwelt-Beispiele (praktisch & TG-tauglich)
	Webserver + Datenbank
	Dein Home-Lab
	Unternehmensumgebung

	11. Best Practices
	Zusammenfassung

