27.01.2026 05:37 1/7 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

zurlick

Docker - Grundlagen (Images, Container,
Volumes, Networks, Compose)

Docker ist eine Container-Technologie, die Anwendungen leichtgewichtig, portabel und isoliert
betreibt, ohne komplette virtuelle Maschinen zu benétigen.

Container teilen sich den Host-Kernel, bendtigen aber keine eigenen Betriebssysteme — dadurch
starten sie extrem schnell und verbrauchen wenig Ressourcen.

1. Warum Docker?

Docker l6st typische IT-Probleme:

~Lauft auf meinem Rechner, aber nicht bei dir”
unterschiedliche Abhangigkeiten / Bibliotheken
komplizierte Installationen

Versionskonflikte

Mit Docker bekommst du:

¢ jsolierte Umgebung
reproduzierbare Builds
portierbare Anwendungen
schnelle Deployments
perfekt fir Microservices

2. Container vs virtuelle Maschinen

Container

teilen sich den Kernel

starten in Sekunden

sehr leichtgewichtig

ideal fur Webapps, DBs, Dienste

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/


http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:start

Last
update:
04.12.2025
13:33

Virtuelle Maschinen

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851613

e vollstandiges OS
¢ hohe Isolation
e grolRere Ressourcenlast

Vergleich:

Container:
Host - Kernel - Container - App

VM:
Host - Hypervisor - volles 0S - App

3. Docker-Image

Ein Image ist eine Vorlage, aus der Container gestartet werden.
Besteht aus Schichten (Layers):

e Basis-Image (z. B. Debian, Alpine)
e App-Dateien

¢ Konfiguration

e Bibliotheken

Images sind:

e unveranderlich
e versionierbar
e portabel

Beispiele:

nginx:latest
mariadb:11
ubuntu:22.04

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 05:37



27.01.2026 05:37 3/7 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

4. Container

Ein Container ist eine laufende Instanz eines Images.
Merkmale:

e isoliert vom Rest des Systems

¢ hat eigene Prozess-ID, eigenes Netzwerk

¢ nutzt das Image als Grundlage

e nicht persistent (ohne Volume gehen Daten verloren)

Befehle:

docker run
docker ps
docker stop
docker logs

5. Volumes - Persistente Daten

Container-Daten sind fluchtig.
FUr dauerhafte Speicherung nutzt man Volumes.

Beispiele:

Datenbanken
Konfigurationen
Zertifikate

Uploads (z. B. Nextcloud)

Volume-Typen:

¢ named volumes (,,docker-volume*)
e bind mounts (z. B. /opt/stacks/app/data)

Container - /data o /opt/stacks/app/data

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/



Last
update:
04.12.2025
13:33

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851613

6. Docker Networks

Container kommunizieren Uber Netzwerke.

Arten:
bridge
Standard-Netzwerk, Container -» Container.

host

Container nutzt Host-Netzwerk direkt.

macvlan

Container bekommt eigene MAC-Adresse im LAN.

overlay

Fir Swarm/Kubernetes-Cluster.

Beispiel:

docker network create mynet

7. Docker Compose

Docker Compose definiert komplette Anwendungen als YAML-Datei.

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 05:37



27.01.2026 05:37 5/7 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

Einfaches Beispiel:

version: "3" # kann weggelassen werden da veraltet

services:
web:
image: nginx
ports:
“80:80"
volumes:
- ./html:/usr/share/nginx/html

Vorteile:

e mehrere Container auf einmal starten

e verstandliche Struktur

e Netzwerke, Volumes, Umgebungsvariablen definierbar
e ideal fur jede moderne Architektur

Starten:

docker compose up -d

8. Registries

Registries speichern Images.
Offentliche:

e Docker Hub
* GitHub Container Registry

Private:

e Harbor
* GitLab Registry
* selbst gehosteter Registry-Container

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/



Last
update:
04.12.2025
13:33

9. Sicherheit in Docker

it-themen:grundlagen:netzwerkdienste:docker http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851613

e Container nicht als root ausfuhren
o eigene Netzwerke nutzen
* Secrets sicher speichern (docker secrets)
* nicht , latest” verwenden
* Images regelmalig aktualisieren
* wenig privilegierte Container starten (-cap-drop)
* Traefik/Nginx vor Webservices setzen

10. Realwelt-Beispiele (praktisch & TG-
tauglich)

Webserver + Datenbank

web (nginx)
db (mariadb)

Dein Home-Lab

¢ Traefik
o Portainer
* Vaultwarden
* Nextcloud
* Matrix
* Mailserver
* Monitoring (Grafana, Promtail, Loki)
* CrowdSec
* LDAP + Samba etc.

Unternehmensumgebung

¢ Microservices
o Load Balancer
* CI/CD Pipelines
* APl Gateways

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 05:37



27.01.2026 05:37 717 Docker - Grundlagen (Images, Container, Volumes, Networks, Compose)

11. Best Practices

e eindeutige Verzeichnisstruktur (/opt/stacks/)
o alles in Docker Compose statt Einzellauf
* Secrets in .env oder docker secrets
* Healthchecks nutzen
* Backups der Volumes nicht vergessen
* Logs zentral erfassen (Loki, ELK)

Zusammenfassung

e Docker nutzt Container statt VMs
o Images als Vorlage - Container als laufende Instanz
* Volumes speichern Daten permanent
* Docker Networks verbinden Container
* Compose verwaltet komplette Anwendungen
* Container sind leicht, schnell und portabel
* Sicherheit ist wichtig (root vermeiden, Updates)
* Container sind Standard in DevOps & modernen IT-Umgebungen

From:
http://wiki.nctl.de/dokuwiki/ - ] Veni. Vidi. sudo rm -rf / vici.

Permanent link:

Last update: 04.12.2025 13:33

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/


http://wiki.nctl.de/dokuwiki/
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:docker&rev=1764851613

	Docker – Grundlagen (Images, Container, Volumes, Networks, Compose)
	1. Warum Docker?
	2. Container vs virtuelle Maschinen
	Container
	Virtuelle Maschinen

	3. Docker-Image
	4. Container
	5. Volumes – Persistente Daten
	6. Docker Networks
	bridge
	host
	macvlan
	overlay

	7. Docker Compose
	8. Registries
	9. Sicherheit in Docker
	10. Realwelt-Beispiele (praktisch & TG-tauglich)
	Webserver + Datenbank
	Dein Home-Lab
	Unternehmensumgebung

	11. Best Practices
	Zusammenfassung

