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zurlick

Docker - Grundlagen (Images, Container,
Volumes, Networks, Compose)

Docker ist eine Container-Technologie, die Anwendungen leichtgewichtig, portabel und isoliert
betreibt, ohne komplette virtuelle Maschinen zu benétigen.

Container teilen sich den Host-Kernel, bendtigen aber keine eigenen Betriebssysteme — dadurch
starten sie extrem schnell und verbrauchen wenig Ressourcen.

1. Warum Docker?

Docker l6st typische IT-Probleme:

~Lauft auf meinem Rechner, aber nicht bei dir”
unterschiedliche Abhangigkeiten / Bibliotheken
komplizierte Installationen

Versionskonflikte

Mit Docker bekommst du:

¢ jsolierte Umgebung
reproduzierbare Builds
portierbare Anwendungen
schnelle Deployments
perfekt fir Microservices

2. Container vs virtuelle Maschinen

Container

teilen sich den Kernel

starten in Sekunden

sehr leichtgewichtig

ideal fur Webapps, DBs, Dienste
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Virtuelle Maschinen
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e vollstandiges OS
¢ hohe Isolation
e grolRere Ressourcenlast

Vergleich:

Container:
Host - Kernel - Container - App

VM:
Host - Hypervisor - volles 0S - App

3. Docker-Image

Ein Image ist eine Vorlage, aus der Container gestartet werden.
Besteht aus Schichten (Layers):

e Basis-Image (z. B. Debian, Alpine)
e App-Dateien

¢ Konfiguration

e Bibliotheken

Images sind:

e unveranderlich
e versionierbar
e portabel

Beispiele:

nginx:latest
mariadb:11
ubuntu:22.04
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4. Container

Ein Container ist eine laufende Instanz eines Images.
Merkmale:

e isoliert vom Rest des Systems

¢ hat eigene Prozess-ID, eigenes Netzwerk

¢ nutzt das Image als Grundlage

e nicht persistent (ohne Volume gehen Daten verloren)

Befehle:

docker run
docker ps
docker stop
docker logs

5. Volumes - Persistente Daten

Container-Daten sind fluchtig.
FUr dauerhafte Speicherung nutzt man Volumes.

Beispiele:

Datenbanken
Konfigurationen
Zertifikate

Uploads (z. B. Nextcloud)

Volume-Typen:

¢ named volumes (,,docker-volume*)
e bind mounts (z. B. /opt/stacks/app/data)

Container - /data o /opt/stacks/app/data
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6. Docker Networks

Container kommunizieren Uber Netzwerke.

Arten:
bridge
Standard-Netzwerk, Container -» Container.

host

Container nutzt Host-Netzwerk direkt.

macvlan

Container bekommt eigene MAC-Adresse im LAN.

overlay

Fir Swarm/Kubernetes-Cluster.

Beispiel:

docker network create mynet

7. Docker Compose

Docker Compose definiert komplette Anwendungen als YAML-Datei.
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Einfaches Beispiel:

version: "3" # kann weggelassen werden da veraltet

services:
web:
image: nginx
ports:
“80:80"
volumes:
- ./html:/usr/share/nginx/html

Vorteile:

e mehrere Container auf einmal starten

e verstandliche Struktur

e Netzwerke, Volumes, Umgebungsvariablen definierbar
e ideal fur jede moderne Architektur

Starten:

docker compose up -d

8. Registries

Registries speichern Images.
Offentliche:

e Docker Hub
* GitHub Container Registry

Private:

e Harbor
* GitLab Registry
* selbst gehosteter Registry-Container
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9. Sicherheit in Docker
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e Container nicht als root ausfuhren
o eigene Netzwerke nutzen
* Secrets sicher speichern (docker secrets)
* nicht , latest” verwenden
* Images regelmalig aktualisieren
* wenig privilegierte Container starten (-cap-drop)
* Traefik/Nginx vor Webservices setzen

10. Realwelt-Beispiele (praktisch & TG-
tauglich)

Webserver + Datenbank

web (nginx)
db (mariadb)

Dein Home-Lab

¢ Traefik
o Portainer
* Vaultwarden
* Nextcloud
* Matrix
* Mailserver
* Monitoring (Grafana, Promtail, Loki)
* CrowdSec
* LDAP + Samba etc.

Unternehmensumgebung

¢ Microservices
o Load Balancer
* CI/CD Pipelines
* APl Gateways
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11. Best Practices

e eindeutige Verzeichnisstruktur (/opt/stacks/)
o alles in Docker Compose statt Einzellauf
* Secrets in .env oder docker secrets
* Healthchecks nutzen
* Backups der Volumes nicht vergessen
* Logs zentral erfassen (Loki, ELK)

Zusammenfassung

e Docker nutzt Container statt VMs
o Images als Vorlage - Container als laufende Instanz
* Volumes speichern Daten permanent
* Docker Networks verbinden Container
* Compose verwaltet komplette Anwendungen
* Container sind leicht, schnell und portabel
* Sicherheit ist wichtig (root vermeiden, Updates)
* Container sind Standard in DevOps & modernen IT-Umgebungen
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