27.01.2026 00:21 1/9 Kubernetes - Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

zurlick

Kubernetes - Grundlagen (Pods, Nodes,
Deployments, Services, Ingress)

Kubernetes (oft ,,K8s" genannt) ist ein System zur Orchestrierung von Containern.
Es verwaltet automatisch:

e Deployment (Bereitstellung) von Containern
e Skalierung (mehr Container starten)
Self-Healing (Neustart bei Fehlern)

Updates ohne Ausfall

Netzwerk zwischen Containern

Storage fur Container

Kubernetes ist der Standard in modernen Cloud-, DevOps- und CI/CD-Umgebungen.

1. Warum Kubernetes?

Docker allein startet Container - Kubernetes betreibt ganze Systeme.
Vorteile:

e automatische Skalierung

¢ Ausfallsicherheit

* Rollout / Rollback von Updates

e Lastverteilung

e Cluster Uber viele Server hinweg

¢ Self-Healing: Container werden automatisch ersetzt

Perfekt fur:

e grolle Webplattformen
e Microservices

e APIs

e Clouddienste

e Enterprise-Infrastruktur

2. Kubernetes Architektur - Uberblick

Kubernetes besteht aus zwei Bereichen:

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:start

Last

gzdfztez:ozs it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes

13:52

e Control Plane - steuert das Cluster
* Worker Nodes - fihren Container aus

ASClII-Ubersicht:

I +
| Control Plane |
| API Server |
| Scheduler |
| Controller Manager |
oo +
I
I
R e +
| |
R R + R L +
Worker Node		Worker Node
Kubelet		Kubelet
Container		Container
Runtime		Runtime
R + L +

3. Die wichtigsten Kubernetes-Objekte

Kubernetes arbeitet mit sogenannten Ressourcen oder Objekten.
Die wichtigsten:

* Pod

e Deployment

Service

Ingress

ConfigMap

Secret

PersistentVolume (PV)
PersistentVolumeClaim (PVC)

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 00:21

27.01.2026 00:21 3/9 Kubernetes - Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

4. Pod

Der Pod ist die kleinste Einheit in Kubernetes.
Ein Pod enthalt:

e einen oder mehrere Container
e gemeinsame IP-Adresse
e gemeinsames Volume

Die Container in einem Pod sind eng gekoppelt.

Schema:

Pod
— Container 1 (z. B. Webserver)
L— Container 2 (z. B. Log-Exporter)

Pods sind fliichtig - sie werden standig ersetzt.
Deshalb nutzt man Deployments, nicht einzelne Pods.

5. Deployment

Ein Deployment steuert, wie viele Pods laufen und wie sie aktualisiert werden.
Funktionen:

e Skalieren (mehr/weniger Pods)

e automatische Neustarts

¢ Rolling Updates (ohne Downtime)
e Rollbacks bei Fehlern

Beispiel YAML:

apiVersion: apps/vl
kind: Deployment
metadata:

name: webapp
spec:

replicas: 3

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

Last
update:
04.12.2025
13:52

it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes

template:
spec:
containers:
- name: app
image: nginx

Dieses Deployment startet 3 Pods mit Nginx.

6. Service

Pods haben dynamische IPs - ein Service sorgt fur stabile Erreichbarkeit.
Arten:

ClusterlP - nur intern erreichbar

NodePort - von aulen Uber hohen Port erreichbar
LoadBalancer - Cloud-Loadbalancer automatisch
ExternalName - Alias zu externem DNS-Namen

Schema:

Clients - Service - verteilt Traffic - mehrere Pods

Service = Kubernetes Loadbalancer.

7. Ingress

Ingress ist ein Reverse Proxy / Loadbalancer auf Layer 7 fur HTTP/HTTPS.

Beispiel:

e https://api.example.com - Backend 1
e https://app.example.com = Backend 2

Ingress-Controller (du kennst das []):

¢ Traefik

http://wiki.nctl.de/dokuwiki/

Printed on 27.01.2026 00:21

https://api.example.com
https://app.example.com

27.01.2026 00:21 5/9 Kubernetes - Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

e Nginx Ingress
e HAProxy
e |stio Gateway

Schema:

Client - Ingress - Service - Pods

Ingress ermdglicht:

e Routing nach Hostname/URL
e TLS-Zertifikate

e Load Balancing

e Middlewares

8. ConfigMaps & Secrets

ConfigMap

Konfigurationen (Text).

env: APP_MODE=production

Secret

Passworter / Zertifikate (Base64-kodiert, nicht verschlisselt!)

env: DB PASSWORD=****

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

Last
update:
04.12.2025
13:52

it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes

9. Persistenter Speicher (Storage)

Pods sind fluchtig - Daten wirden verloren gehen.
Daher nutzt man PV und PVC.

PersistentVolume (PV)

das eigentliche Storage-Backend
z. B. NFS, iSCSI, Ceph, lokal

PersistentVolumeClaim (PVC)

Anfrage eines Pods nach Speicher

Schema:

PVC (Pod) - PV - Storage (NFS/SSD/Ceph)

10. Kubernetes Netzwerk

Jeder Pod bekommt:

e eigene IP (intern)
e kann mit allen Pods kommunizieren (by default)

CNI-Plugins regeln das Netzwerk:

e Calico

¢ Flannel

¢ Cilium (besser, modern)
* Weave

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 00:21

27.01.2026 00:21 7/9 Kubernetes - Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

11. Skalierung
Kubernetes kann automatisch skalieren:

Horizontal Pod Autoscaler (HPA)

z. B. starte 10 zusatzliche Pods wenn CPU > 70%

Vertical Autoscaler

passt CPU/RAM an

Cluster Autoscaler

startet neue Nodes in der Cloud

12. Self-Healing

Kubernetes Uberwacht seine Pods:
Wenn:

¢ Pod crasht
* Node ausfallt
e Container hangt

Dann:

e Pod wird automatisch ersetzt
e Deployment sorgt fur korrekte Anzahl
¢ Load Balancer leitet Traffic auf gesunde Pods

13. Kubernetes vs Docker Compose

Funktion |Docker ComposeKubernetes
Deployment|einfach komplex, machtig
Skalierung |manuell automatisch

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

Last

update: it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes

04.12.2025

13:52

Funktion |Docker Compose Kubernetes
Self-Healing|nein ja

Updates manuell rolling updates

Netzwerk |einfach Cluster-weite Kommunikation
Betrieb Einzelserver mehrere Nodes

Kurz: Compose = kleine Projekte Kubernetes = GroRBprojekte / Enterprise

14. Beispiele aus der Praxis

Microservices

Viele kleine Dienste:

e Auth-Service
e Payment-Service
e User-Service

Cloud-Apps

Kubernetes ist Grundlage von:

e Google Cloud
e Azure AKS
e AWS EKS

Home-Lab

Mini-Kubernetes mit:

e k3s
e MicroK8s
e kind

Zusammenfassung

e Kubernetes orchestriert Container automatisiert

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 00:21

27.01.2026 00:21 9/9 Kubernetes - Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

Pod = kleinste Einheit

Deployment = steuert Pods, Updates, Skalierung

Service = Load Balancer fur Pods

Ingress = HTTP/HTTPS Reverse Proxy

PV/PVC = persistenter Speicher

Kubernetes = Standard fur moderne Cloud-Anwendungen

From:
http://wiki.nctl.de/dokuwiki/ -] Veni. Vidi. sudo rm -rf / vici.

Permanent link: -.;'|-|..';‘.:.'i‘i'-
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes o { ity

Last update: 04.12.2025 13:52

0 Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

http://wiki.nctl.de/dokuwiki/
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes

	Kubernetes – Grundlagen (Pods, Nodes, Deployments, Services, Ingress)
	1. Warum Kubernetes?
	2. Kubernetes Architektur – Überblick
	3. Die wichtigsten Kubernetes-Objekte
	4. Pod
	5. Deployment
	6. Service
	7. Ingress
	8. ConfigMaps & Secrets
	ConfigMap
	Secret

	9. Persistenter Speicher (Storage)
	PersistentVolume (PV)
	PersistentVolumeClaim (PVC)

	10. Kubernetes Netzwerk
	11. Skalierung
	Horizontal Pod Autoscaler (HPA)
	Vertical Autoscaler
	Cluster Autoscaler

	12. Self-Healing
	13. Kubernetes vs Docker Compose
	14. Beispiele aus der Praxis
	Microservices
	Cloud-Apps
	Home-Lab

	Zusammenfassung

