
27.01.2026 03:42 1/8 Kubernetes – Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

zurück

Kubernetes – Grundlagen (Pods, Nodes,
Deployments, Services, Ingress)

Kubernetes (oft „K8s“ genannt) ist ein System zur Orchestrierung von Containern.
Es verwaltet automatisch:

Deployment (Bereitstellung) von Containern
Skalierung (mehr Container starten)
Self-Healing (Neustart bei Fehlern)
Updates ohne Ausfall
Netzwerk zwischen Containern
Storage für Container

Kubernetes ist der Standard in modernen Cloud-, DevOps- und CI/CD-Umgebungen.

1. Warum Kubernetes?

Docker allein startet Container – Kubernetes betreibt ganze Systeme.

Vorteile:

automatische Skalierung
Ausfallsicherheit
Rollout / Rollback von Updates
Lastverteilung
Cluster über viele Server hinweg
Self-Healing: Container werden automatisch ersetzt

Perfekt für:

große Webplattformen
Microservices
APIs
Clouddienste
Enterprise-Infrastruktur

2. Kubernetes Architektur – Überblick

Kubernetes besteht aus zwei Bereichen:

http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:start

Last
update:
04.12.2025
13:45

it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes&rev=1764852323

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 03:42

Control Plane – steuert das Cluster
Worker Nodes – führen Container aus

ASCII-Übersicht:

 +---------------------+
 | Control Plane |
 | API Server |
 | Scheduler |
 | Controller Manager |
 +---------------------+
 |
 |
 +-----------+------------+
 | |
 +-------------+ +--------------+
Worker Node		Worker Node
Kubelet		Kubelet
Container		Container
Runtime		Runtime
 +-------------+ +--------------+

3. Die wichtigsten Kubernetes-Objekte

Kubernetes arbeitet mit sogenannten Ressourcen oder Objekten.

Die wichtigsten:

Pod
Deployment
Service
Ingress
ConfigMap
Secret
PersistentVolume (PV)
PersistentVolumeClaim (PVC)

27.01.2026 03:42 3/8 Kubernetes – Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

4. Pod

Der Pod ist die kleinste Einheit in Kubernetes.

Ein Pod enthält:

einen oder mehrere Container
gemeinsame IP-Adresse
gemeinsames Volume

Die Container in einem Pod sind eng gekoppelt.

Schema:

 Pod
 ├── Container 1 (z. B. Webserver)
 └── Container 2 (z. B. Log-Exporter)

Pods sind flüchtig – sie werden ständig ersetzt.
Deshalb nutzt man Deployments, nicht einzelne Pods.

5. Deployment

Ein Deployment steuert, wie viele Pods laufen und wie sie aktualisiert werden.

Funktionen:

Skalieren (mehr/weniger Pods)
automatische Neustarts
Rolling Updates (ohne Downtime)
Rollbacks bei Fehlern

Beispiel YAML:

 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: webapp
 spec:
 replicas: 3

Last
update:
04.12.2025
13:45

it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes&rev=1764852323

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 03:42

 template:
 spec:
 containers:
 - name: app
 image: nginx

Dieses Deployment startet 3 Pods mit Nginx.

6. Service

Pods haben dynamische IPs – ein Service sorgt für stabile Erreichbarkeit.

Arten:

ClusterIP → nur intern erreichbar
NodePort → von außen über hohen Port erreichbar
* LoadBalancer → Cloud-Loadbalancer automatisch
* ExternalName → Alias zu externem DNS-Namen

ASCII:

Clients → Service → verteilt Traffic → mehrere Pods

Service = Kubernetes Loadbalancer.

7. Ingress

Ingress ist ein Reverse Proxy / Loadbalancer auf Layer 7 für HTTP/HTTPS.

Beispiel:

https://api.example.com → Backend 1
https://app.example.com → Backend 2

Ingress-Controller (du kennst das �):

Traefik
Nginx Ingress
HAProxy

https://api.example.com
https://app.example.com

27.01.2026 03:42 5/8 Kubernetes – Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

Istio Gateway

ASCII:

Client → Ingress → Service → Pods

Ingress ermöglicht:

Routing nach Hostname/URL
TLS-Zertifikate
Load Balancing
Middlewares

8. ConfigMaps & Secrets

ConfigMap

Konfigurationen (Text).

env: APP_MODE=production

Secret

Passwörter / Zertifikate (Base64-kodiert, nicht verschlüsselt!)

env: DB_PASSWORD=****

9. Persistenter Speicher (Storage)

Pods sind flüchtig → Daten würden verloren gehen.
Daher nutzt man PV und PVC.

PersistentVolume (PV)

das eigentliche Storage-Backend

Last
update:
04.12.2025
13:45

it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes&rev=1764852323

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 03:42

z. B. NFS, iSCSI, Ceph, lokal

PersistentVolumeClaim (PVC)

Anfrage eines Pods nach Speicher

ASCII:

PVC (Pod) → PV → Storage (NFS/SSD/Ceph)

10. Kubernetes Netzwerk

Jeder Pod bekommt:

eigene IP (intern)
kann mit allen Pods kommunizieren (by default)

CNI-Plugins regeln das Netzwerk:

Calico
Flannel
Cilium (besser, modern)
Weave

11. Skalierung

Kubernetes kann automatisch skalieren:

Horizontal Pod Autoscaler (HPA)

z. B. starte 10 zusätzliche Pods wenn CPU > 70%

Vertical Autoscaler

passt CPU/RAM an

27.01.2026 03:42 7/8 Kubernetes – Grundlagen (Pods, Nodes, Deployments, Services, Ingress)

�️ Veni. Vidi. sudo rm -rf / vici. - http://wiki.nctl.de/dokuwiki/

Cluster Autoscaler

startet neue Nodes in der Cloud

12. Self-Healing

Kubernetes überwacht seine Pods:

Wenn:

Pod crasht
* Node ausfällt
* Container hängt

Dann:

Pod wird automatisch ersetzt
* Deployment sorgt für korrekte Anzahl
* Load Balancer leitet Traffic auf gesunde Pods

—

13. Kubernetes vs Docker Compose
Funktion Docker Compose Kubernetes
———- —————- ————
Deployment einfach komplex, mächtig
Skalierung manuell automatisch
Self-Healing nein ja
Updates manuell rolling updates
Netzwerk einfach Cluster-weite Kommunikation
Betrieb Einzelserver mehrere Nodes

Kurz: Compose = kleine Projekte
Kubernetes = Großprojekte / Enterprise

14. Beispiele aus der Praxis

Last
update:
04.12.2025
13:45

it-themen:grundlagen:netzwerkdienste:kubernetes http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes&rev=1764852323

http://wiki.nctl.de/dokuwiki/ Printed on 27.01.2026 03:42

Microservices

Viele kleine Dienste:

Auth-Service
* Payment-Service
* User-Service

Cloud-Apps

Kubernetes ist Grundlage von:

Google Cloud
* Azure AKS
* AWS EKS

Home-Lab

Mini-Kubernetes mit:

k3s
* MicroK8s
* kind

—

Zusammenfassung

Kubernetes orchestriert Container automatisiert
Pod = kleinste Einheit
* Deployment = steuert Pods, Updates, Skalierung
* Service = Load Balancer für Pods
* Ingress = HTTP/HTTPS Reverse Proxy
* PV/PVC = persistenter Speicher
* Kubernetes = Standard für moderne Cloud-Anwendungen

From:
http://wiki.nctl.de/dokuwiki/ - �️ Veni. Vidi. sudo rm -rf / vici.

Permanent link:
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes&rev=1764852323

Last update: 04.12.2025 13:45

http://wiki.nctl.de/dokuwiki/
http://wiki.nctl.de/dokuwiki/doku.php?id=it-themen:grundlagen:netzwerkdienste:kubernetes&rev=1764852323

	Kubernetes – Grundlagen (Pods, Nodes, Deployments, Services, Ingress)
	1. Warum Kubernetes?
	2. Kubernetes Architektur – Überblick
	3. Die wichtigsten Kubernetes-Objekte
	4. Pod
	5. Deployment
	6. Service
	7. Ingress
	8. ConfigMaps & Secrets
	ConfigMap
	Secret

	9. Persistenter Speicher (Storage)
	PersistentVolume (PV)
	PersistentVolumeClaim (PVC)

	10. Kubernetes Netzwerk
	11. Skalierung
	Horizontal Pod Autoscaler (HPA)
	Vertical Autoscaler
	Cluster Autoscaler

	12. Self-Healing
	13. Kubernetes vs Docker Compose
	14. Beispiele aus der Praxis
	Microservices
	Cloud-Apps
	Home-Lab

	Zusammenfassung

